BACK PAPER 2019: COMPUTER SCIENCE II (B.MATH. 2ND YEAR)

- This is a pen-and-paper, closed book exam. Use of computers/calculators is not allowed.
- All questions are compulsory. The question paper is of 100 points.

Problem 1 $(2 \times 5 = 10 \text{ marks})$. Answer the following questions. You are not required to furnish an explanation or demonstrate the calculation.

- (1) What does the command print sec(1) will output in SageMath?
- (2) What does the following program output?

```
for i in range(10):
print i
```

- (3) What is the order of global truncation error needed to guarantee convergence and consistency for numerical solutions of ordinary differential equations?
- (4) Given N data points (x_i, y_i) for $1 \le i \le N$ where $x_i \in \mathbb{R}^r$ is a r-tuple and $y_i \in \mathbb{R}$. Then we can find the best fit linear relation F for y = F(x) using QR-decomposition of an appropriate matrix. There does not exist a best fit linear relation when $x_i \in \mathbb{C}^r, y_i \in \mathbb{C}$ since QR-decomposition exists only for real matrices. True or False?
- (5) A Gaussian quadrature which computes weighted sum of n evaluations has zero error when computing the integral for a polynomial of degree d. What is the largest possible value of d?

Problem 2 (10 marks). What does the following program output?

```
k = 0
for i in range(100):
    k = RealNumber(k + 2^(-i))
print k.str(base = 2)
```

Problem 3 (10 marks). Consider a tridiagonal square matrix of real numbers, of size $N \times N$ – that is a matrix $A = (a_{ij})_{1 \le i,j \le N}$ where $a_{ij} \ne 0 \Rightarrow |i-j| \le 1$. Assume that $|a_{ii}| > |a_{i,i-1}| + |a_{i,i+1}|$ for all $1 \le i \le N$ where we define $a_{1,0} = a_{N,N+1} := 0$. Show that A^{-1} exists.

Problem 4 (10 marks). The following SageMath function was supposed to produce the derivative of the piecewise polynomial function $p(x) := \begin{cases} x^2 - x + 1 & x < 1 \\ 2x^2 - 3x + 2 & x \ge 1 \end{cases}$ which is differentiable everywhere. It is flawed. What is it's output and why?

```
def p(x):
    if (x<1):
        return x*x-x+1
    else:
        return 2*x*x-3*x+2
print p(x).derivative() #Supposed to print the derivative!</pre>
```

Problem 5 (20 marks). Let $f : [a, b] \to \mathbb{R}$ be a function which is infinitely differentiable in some neighborhood of [a, b]. Let $L_n(f)$ be the degree n Lagrange polynomial approximating f, that is interpolating n + 1

points $(a_k := a + k \left(\frac{b-a}{n}\right), f(a_k))$ for $0 \le k \le n$. Show that

$$|f(x) - L_n(f)(x)| \le \frac{(b-a)^{n+1}}{(n+1)!} \sup_{z \in [a,b]} |f^{(n+1)}(z)|.$$

Problem 6 (20 marks). Compute QR decomposition of the following matrix

$$A = \begin{pmatrix} 12 & -51 & 4\\ 6 & 167 & -68\\ -4 & 24 & -41 \end{pmatrix}$$

that is find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

Problem 7 (20 marks). Assume $f : [a,b] \to \mathbb{R}$ is a function which is infinitely differentiable in some neighborhood of [a,b]. We compute $\int_a^b f(x)dx$ using Newton-Cotes integration rule of degree d (that is by using piecewise polynomials of degree d) and let us denote the result as $I_d(f)$.

- (1) Let d be odd. Show that for f(x) a polynomial of degree less than or equal to d, the method computes the integral exactly that is I_d(f) = ∫_b^a f(x)dx.
 (2) Let d be even. Show that for f(x) a polynomial of degree less than or equal to d + 1, the method
- (2) Let d be even. Show that for f(x) a polynomial of degree less than or equal to d + 1, the method computes the integral exactly that is $I_d(f) = \int_b^a f(x) dx$.